Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods.

نویسندگان

  • Pan T X Li
  • Delphine Collin
  • Steven B Smith
  • Carlos Bustamante
  • Ignacio Tinoco
چکیده

Mechanical unfolding and refolding of single RNA molecules have previously been observed in optical traps as sudden changes in molecular extension. Two methods have been traditionally used: "force-ramp", with the applied force continuously changing, and "hopping". In hopping experiments the force is held constant and the molecule jumps spontaneously between two different states. Unfolding/refolding rates are measured directly, but only over a very narrow range of forces. We have now developed a force-jump method to measure the unfolding and refolding rates independently over a wider range of forces. In this method, the applied force is rapidly stepped to a new value and either the unfolding or refolding event is monitored through changes in the molecular extension. The force-jump technique is compared to the force-ramp and hopping methods by using a 52-nucleotide RNA hairpin with a three-nucleotide bulge, i.e., the transactivation response region RNA from the human immunodeficiency virus. We find the unfolding kinetics and Gibbs free energies obtained from all three methods to be in good agreement. The transactivation response region RNA hairpin unfolds in an all-or-none two-state reaction at any loading rate with the force-ramp method. The unfolding reaction is reversible at small loading rates, but shows hysteresis at higher loading rates. Although the RNA unfolds and refolds without detectable intermediates in constant-force conditions (hopping and force-jump), it shows partially folded intermediates in force-ramp experiments at higher unloading rates. Thus, we find that folding of RNA hairpins can be more complex than a simple single-step reaction, and that application of several methods can improve understanding of reaction mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of thermodynamics and kinetics of RNA reactions by force.

Single-molecule methods have made it possible to apply force to an individual RNA molecule. Two beads are attached to the RNA; one is on a micropipette, the other is in a laser trap. The force on the RNA and the distance between the beads are measured. Force can change the equilibrium and the rate of any reaction in which the product has a different extension from the reactant. This review desc...

متن کامل

A new computational approach for mechanical folding kinetics of RNA hairpins.

Based on an ensemble of kinetically accessible conformations, we propose a new analytical model for RNA folding kinetics. The model gives populational kinetics, kinetic rates, transition states, and pathways from the rate matrix. Applications of the new kinetic model to mechanical folding of RNA hairpins such as trans-activation-responsive RNA reveal distinct kinetic behaviors in different forc...

متن کامل

Force unfolding kinetics of RNA using optical tweezers. II. Modeling experiments.

By exerting mechanical force, it is possible to unfold/refold RNA molecules one at a time. In a small range of forces, an RNA molecule can hop between the folded and the unfolded state with force-dependent kinetic rates. Here, we introduce a mesoscopic model to analyze the hopping kinetics of RNA hairpins in an optical tweezers setup. The model includes different elements of the experimental se...

متن کامل

Block Jump Height Assessment Based on Kinetic Approach in Volleyball Players: Is There any Difference Between Methods?

Purpose: Various kinematics and kinetics methods have been proposed for the assessment of jumping ability as a critical skill in professional volleyball players, but little is known about the accuracy and differences between these methods. Therefore, the objective of the current study was to answer the question “Is there any difference between the results of various kinetic methods in the asses...

متن کامل

Hopping around an entropic barrier created by force.

We use Langevin dynamics to investigate the role played by the recently discovered force-induced entropic energy barrier on the two-state hopping phenomena that has been observed in single RNA, DNA and protein molecules placed under a stretching force. Simple considerations about the free energy of a molecule readily show that the application of force introduces an entropic barrier separating t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 90 1  شماره 

صفحات  -

تاریخ انتشار 2006